Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

Microscopic simulation based study of pedestrian safety applications at signalized urban crossings in a connected-automated vehicle environment and reinforcement learning based optimization of vehicle decisions

F. Zuo, K. Ozbay, A. Kurkcu, J. Gao, H. Yang, K. Xie
Pages: 113-126

Abstract:

This study develops a vehicle-pedestrian safety application for signalized urban crossings in a connected-automated vehicle (CAV) environment and establishes a microscopic simulation environment to implement the safety application using a highly flexible open-source simulation tool. A widely-used surrogate safety measure (SSM) namely, post-encroachment time (PET), is used to capture the number of conflicts. A reinforcement learning algorithm is used to train the CAV agents to determine the optimal timing to cross the intersection with the consideration of pedestrian safety. A variety of real-world datasets are used to calibrate and validate the simulation environment. The simulation results show that the pedestrian safety application can significantly reduce the number of potential conflicts, and the reinforcement-learning-trained CAV agents have demonstrated lower average travel times when crossing intersections.
Keywords: Connected-Automated Vehicles (CAV); pedestrian; safety; SUMO; reinforcement learning

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES